Vapor-Liquid Equilibria of Propyl Propanoate with 1-Alkanols at 101.32 kPa of Pressure

Juan Ortega* and Salvador Galván

Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, 35071 University of Las Palmas de Gran Canaria, Spain

The T-x-y measurements for propyl propanoate + ethanol, + 1-propanol, and + 1-butanol obtained at 101.32 kPa in a dynamic ebullometer are reported. All mixtures studied exhibit positive deviations from ideality and are thermodynamically consistent according to the point-to-point test. A minimum boiling azeotrope was found for propyl propanoate (1) + 1-butanol (2) at T = 389.3 K and $x_1 = y_1 = 0.328$. The predictions of the activity coefficients and of the vapor phase compositions show good agreement with the ASOG model and moderate agreement with the UNIFAC model.

Introduction

When the components constituting a mixture are not chemically similar, they are likely to form nonideal solutions, and therefore, their vapor-liquid equilibrium (VLE) behavior cannot be described by Raoult's law. The purpose of the present investigation is to obtain VLE measurements on mixtures of esters and alcohols to provide an insight into the extent of deviation from ideality and to determine if existing semiempirical models can predict the results.

As a continuation of our studies on VLE (Ortega et al., 1986; Ortega et al., 1990; Susial and Ortega, 1993), we present isobaric VLE measurements for propyl propanoate + ethanol, + 1-propanol, and + 1-butanol at 101.32 kPa. Results for propyl propanoate + 1-propanol are compared with literature values (Mozzhukhin, A. S.; Mitropolskaya, V. A.; Serafimov, L. A. Zh. Fiz. Khim. **1967**, 41, 227; see Gmehling et al., 1982). The experimental values are also compared with those estimated by the following groupcontribution models: ASOG (Kojima and Tochigi, 1979) and UNIFAC (Fredenslund et al., 1975; Larsen et al., 1986). The latest revisions of these methods (Tochigi et al., 1990; Hansen et al., 1991) do not present modifications in the interaction parameters used for this study.

Experimental Section

Chemicals. All chemicals used in this research were supplied by Fluka AG and were used without further purification. They were degassed simply by ultrasound before use and stored over molecular sieves, type 3 Å, from Fluka. The density, ρ , refractive index, n, and boiling temperature of the pure substance i, $T_{\rm b,i}$, were measured, and for the 1-alkanols the values obtained did not differ significantly from those published earlier by Galvan et al. (1994). For propyl propanoate (purum >99 mol %) we found the following values: $\rho(298.15 \text{ K}) = 875.65 \text{ kgm}^{-3}$ (876.7, TRC, 1969), n(D, 298.15 K) = 1.3918 (1.3920, TRC, 1969) and $T_{\rm b} = 395.35 \text{ K}$ (395.65, TRC, 1969).

Apparatus and Procedure. Isobaric VLE measurements were made using the dynamic recirculating still described previously (Ortega et al., 1986). Compositions were determined from density using an Anton-Paar having a precision of ± 0.02 kgm⁻³. Traditionally, the density is correlated as a function of liquid mixture composition using an *n*th-order polynomial. However, in this work the vapor and liquid samples were obtained through the correlation of the excess volumes versus ester concentration. A more

Table 1.	Densities	and	Excess	Volumes	for	Propyl
Propanos	ite (1) + 1-	Alka	nols (2)	at 298.15	K	

		$10^{9}V^{E}/$			$10^{9}V^{E}/$
\boldsymbol{x}_1	$\varrho/(kg m^{-3})$	(m ³ ·mol ⁻¹)	x_1	$\varrho/(kg m^{-3})$	(m ³ ·mol ⁻¹)
	Prop	yl Propanoat	e(1) + Et	hanol (2)	
0.0000	784.96	0	0.3383	832.81	75
0.0945	801.94	25	0.4404	842.16	90
0.1184	805.67	32	0.5354	849.57	99
0.1375	808.52	38	0.6653	858.38	96
0.1737	813.64	44	0.7670	864.24	85
0.2075	818.09	51	0.9061	871.31	48
0.2234	820.07	56	1.0000	875.65	0
0.2799	826.65	67			
	Propy	Propanoate	(1) + 1-Pr	opanol (2)	
0.0000	799.58	- 0	0.4988	846.96	112
0.0260	802.80	11	0.5866	852.94	113
0.0634	807.35	25	0.7012	860.00	99
0.2023	822.38	72	0.8096	866.06	72
0.2723	828.84	87	0.8385	867.52	64
0.3477	835.45	102	1.0000	875.65	0
0.4195	841.18	109			
	Propy	l Propanoate	(1) + 1-B	utanol (2)	
0.0000	805.98	0	0.5965	852.09	166
0.0870	813.75	52	0.7388	860.85	144
0.1192	816.57	70	0.7526	861.68	138
0.1407	818.46	76	0.8311	866.25	108
0.1777	821.57	94	0.8937	869.76	79
0.2114	824.36	106	0.9460	872.66	47
0.2776	829.61	131	0.9802	874.55	16
0.3481	834.97	149	1.0000	875.65	0
0.4724	843.88	164			
0.5669	850.19	167			

Table 2. Coefficients A_i and k in Eq 1 and Standard Deviations, $s(V^{E})$

mixture	k	A_0	A_1	A_2	$\frac{10^9 s(V^{\rm E})}{({\rm m^{3} \cdot mol^{-1}})}$
propyl propanoate (1) + ethanol (2)	2.718	286	351		1
+ 1-propanol (2) + 1-butanol (2)	$0.671 \\ 1.515$	434 656	11 -117	40 370	1 1

detailed description of the experimental values and correlations used is given in the following section. The accuracies in the mole fraction for the vapor and liquid phases were better than ± 0.005 and did not differ significantly from those obtained using the correlations of density vs mole fraction.

Results and Discussion

Densities. For each binary system a set of about 25 mixtures of known composition were prepared by mass

Figure 1. Experimental (O) and calculated values of $(y_1 - x_1)$ vs x_1 for the mixtures propyl propanoate (1) + 1-alkanols (2) and (\bullet) experimental points from Gmehling et al. (1982) for propyl propanoate (1) + 1-propanol (2).

Table 3. Experimental Vapor Pressures, P_i° , of Propyl Propanoate as a Function of Temperature, T

T/K	p_i°/\mathbf{kPa}	T/K	P_i°/kPa	T/\mathbf{K}	p_i°/kPa
378.29	61.26	395.79	104.15	402.02	124.29
379.80	64.19	396.47	106.28	402.59	126.33
380.77	66.26	397.08	108.19	403.23	128.53
382.08	69.11	397.78	110.39	403.67	130.11
385.70	77.30	398.38	112.32	404.12	131.71
388.18	83.38	399.03	114.36	404.64	133.67
389.66	87.18	399.72	116.58	405.27	135.95
390.70	89.92	400.39	118.77	405.83	138.12
391.79	92.88	400.92	120.47		
394.27	99.87	401.46	122.28		

using a balance with a resolution of $\pm 10^{-5}$ g. From the density values at 298.15 \pm 0.01 K the $V^{\rm E}$ values were calculated for each ester concentration, and those results are shown in Table 1. The excess volumes were correlated by an equation of the type

$$10^9 V^{\text{E}} / (\text{m}^3 \cdot \text{mol}^{-1}) = x_1 x_2 \sum A_i \{ x_1 / [x_1 + k(1 - x_1)] \}$$
(1)

where x_1 is the ester mole fraction. The coefficients A_i and k, obtained through a least-squares procedure, are given in Table 2. The regular distribution of the points $(x_1, V^{\rm E})$ obtained experimentally for each system indicates good values for density; the precision obtained in the vapor, y_i , and liquid, x_i , phase mole fractions was estimated to be ± 0.001 unit. No $V^{\rm E}$ data have been found in the literature for the mixtures studied.

Vapor Pressure. In the thermodynamic treatment of the VLE results the Antoine equation was used to correlate the temperature, T, and vapor pressure p_i° , values of the

Figure 2. Experimental (O) and calculated values of T vs x_1 or y_1 for the mixtures propyl propanoate (1) + 1-alkanols (2) and (\bullet) experimental points from Gmehling et al. (1982) for propyl propanoate (1) + 1-propanol (2).

pure liquids. The constants A, B, and C for the 1-alkanols were from other previous works (Ortega et al., 1990; Susial and Ortega, 1993); however, the corresponding values for propyl propanoate, given in Table 4, were obtained by a nonlinear regression with the new vapor pressure results given in Table 3.

Vapor–Liquid Equilibrium Data. Results for propyl propanoate (1) + ethanol (2), + propanol (2), and + butanol (2) at 101.32 ± 0.02 kPa are given in Table 5 along with the activity coefficients, γ_i . Those values were calculated by

$$\ln \gamma_1 = \ln\left(\frac{py_i}{p_i \circ x_i}\right) + \frac{(B_{ii} - V_i^{\perp})(p - p_i^{\circ})}{RT} + \frac{P}{2RT}\sum_j \sum_k y_j y_k (2\delta_{ji} - \delta_{jk}) \quad (2)$$

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

where p is the total pressure and R the universal gases constant. The molar volumes, $V_i^{\rm L}$, and the second virial coefficients, B_{ij} , were estimated, respectively, by the modified Rackett equation (see Spencer and Danner, 1972) and the empirical correlations proposed by Tsonopoulos (1974). These same expressions were used in the application of the point-to-point test (Fredenslund et al., 1977) instead of those from Hayden and O'Connell (1975). In this work, the overall deviation of vapor phase composition was less than 0.01 when a third-order expansion was used to

Table 4. Antoine Equation^a Coefficients, A, B, and C, Used in This Work and Standard Deviation, $s(p_i^{\circ})$

	A	В	<i>C</i>	$s(p_i^{\circ})$	ref
propyl propanoate	6.011 27	1276.62	76.08	0.06	this work
	$6.195\ 65$	1383.66	65.07		Fárková and Wichterle (1993)
ethanol	7.11302	1513.02	55.15		Ortega et al. (1990)
1-propanol	6.869 85	1434.94	74.98		Ortega et al. (1990)
1-butanol	6.917 01	1572.51	70.04		Susial and Ortega (1993)

^{*a*} Antoine equation: $log(p_i^{\circ}/kPa) = A - B/[(T/K) - C].$

Journal of Chemical and Engineering Data, Vol. 39, No. 4, 1994 909

Table 5.	Vapor-Liquid E	guilibrium Data	for Propyl	Propanoate	(1) +	1-Alkanols	(2) at	101.32 kPa
----------	----------------	-----------------	------------	------------	-------	------------	--------	------------

upic o.	tupor Diquia			-FJF					
T/K	<i>x</i> ₁	<i>y</i> 1	γ1	γ_2	T/K	x_1	y_1	γ1	γ2
			Prop	yl Propanoate	e(1) + Ethanol	l (2)			
351.13	0.0000	0.0000		1.000	357.60	0.4667	0.1777	1.233	1.221
351.40	0.0187	0.0097	2.119	0.998	358.31	0.4991	0.1882	1.190	1.252
351.63	0.0417	0.0227	2.203	1.000	358.70	0.5165	0.1942	1.171	1.270
351.86	0.0652	0.0352	2.166	1.004	359.21	0.5458	0.2048	1.147	1.310
352 13	0.0898	0.0473	2.091	1.008	360.57	0.5985	0.2261	1.100	1.376
352.10	0.0000	0.0577	1 989	1 016	362.07	0.6420	0.2476	1.066	1.426
352 71	0.1496	0.0698	1 900	1 023	363.57	0.6866	0 2733	1.044	1.495
353 10	0.1737	0.0000	1 797	1 033	365.25	0.7281	0 3004	1 021	1.569
353 61	0.2160	0.0010	1 748	1.039	368.90	0 7923	0.3604	0.996	1 666
254 10	0.2000	0.0000	1.580	1.069	374 65	0.8628	0.4631	0.975	1 765
054.10	0.2020	0.1001	1.000	1.009	291 59	0.0020	0.4001	0.077	1.100
354.61	0.2898	0.1192	1.407	1.092	301.00	0.9150	0.0038	0.977	1.004
355.13	0.3243	0.1303	1.424	1.112	201.01	0.9000	0.7720	1 004	1.070
355.63	0.3563	0.1403	1.370	1.134	393.42	0.9900	0.9009	1.004	1.130
356.30	0.3891	0.1520	1.327	1.151	395.65	1.0000	1.0000	1.000	
			Propy	Propanoate	(1) + 1-Propan	ol (2)			
369.83	0.0000	0.0000		1.000	376.88	0.5942	0.3670	1.051	1.228
369.96	0.0329	0.0259	1.693	1.005	377.73	0.6302	0.3914	1.028	1.259
370 53	0.1311	0.1002	1.608	1.013	378.15	0.6488	0.4028	1.014	1.283
371.03	0 1995	0 1344	1.392	1.039	379.03	0.6838	0.4292	0.997	1.323
371.35	0.2411	0 1552	1 315	1.058	380.17	0.7178	0.4622	0.987	1.345
371 75	0.2706	0.1770	1 318	1.058	381 75	0 7579	0 5078	0.979	1.364
372.06	0.2100	0.1957	1.010	1.000	382 53	0.7810	0.5328	0.973	1 396
979.09	0.3070	0.1357	1 200	1 103	384.26	0.7010	0.5896	0.972	1 420
373.03	0.0700	0.2303	1.200	1 1 9 4	386.06	0.8577	0.6477	0.969	1 449
373.40	0.4070	0.2475	1.109	1.124	388.05	0.8057	0.0477	0.000	1 / 83
373.70	0.4409	0.2001	1.102	1.100	200.00	0.0307	0.7150	0.971	1 591
374.10	0.4037	0.2701	1.114	1.101	204.05	0.9430	0.0204	1 000	1.501
374.78	0.5115	0.2965	1.000	1.217	394.00	0.9920	1 0000	1.000	1.004
376.13	0.5681	0.3421	1.049	1.229	395.00	1.0000	1.0000	1.000	
			Propy	l Propanoate	(1) + 1-Butan	ol (2)			
390.85	0.0000	0.0000		1.000	389.67	0.5105	0.4703	1.071	1.104
390.74	0.0116	0.0166	1.645	0.974	389.79	0.5397	0.4936	1.059	1.119
390.60	0.0221	0.0290	1.514	0.976	389.93	0.5615	0.5142	1.055	1.122
390.37	0.0498	0.0629	1.464	0.977	390.05	0.5821	0.5282	1.042	1.139
390.22	0.0670	0.0826	1.434	0.979	390.37	0.6315	0.5698	1.026	1.167
390.12	0.0844	0.1020	1.408	0.980	390.56	0.6521	0.5878	1.019	1.178
390.11	0.1051	0.1253	1.388	0.977	390.78	0.6791	0.6129	1.013	1.192
389.81	0.1290	0.1507	1.370	0.985	391.11	0.7161	0.6483	1.006	1.212
389.63	0 1572	0 1789	1 340	0.990	391.41	0.7410	0.6726	1.000	1.225
389.35	0.2489	0.2647	1 257	1 005	391 69	0 7620	0.6939	0.995	1.236
389.97	0 2804	0 2905	1.226	1.016	391.87	0.7786	0.7123	0.994	1.243
380.97	0.2004	0.3113	1 210	1 020	392.01	0 7894	0.7249	0.994	1.244
380.24	0.0042	0.3265	1 173	1.025	392.83	0.8470	0 7894	0.985	1 279
380.33	0.0200	0.3253	1 148	1 044	393 32	0.8758	0.8246	0.981	1 294
380 3m 902.99	0.0040	0.0000	1 1 9 9	1 055	303 61	0.8004	0.8514	0.978	1 349
200.40	0.0540	0.0194	1 104	1.000	307.10	0.0334	0.0014	0.510	1 / 91
000.4U	0.4190	0.3740	1.100	1.071	205 65	1 0000	1 0000	1 000	1.741
309.47	0.4029	0.4207	1.000	1.000	990.09	1.0000	1.0000	1.000	
389.56	0.4794	0.4400	1.089	1.020					

represent the results of the three isobaric mixtures; thus, all data sets were shown to be thermodynamically consistent.

The results were analyzed using the dimensionless function $g^{\rm E}/RT$ as a function of x_1 using the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations and an equation similar to eq 1, previously used by us (Ortega et al., 1986) to correlate VLE data and with the form

$$Q = z(1-z) \sum A_i \{ z / [z + k(1-z)] \}^i$$
 (4)

where z is a variable considered in each case. The coefficients obtained for the above equations and eq 4 are given in Table 6 along the standard deviations. The results indicate that all equations are suitable to represent the data, although the best correlation is given by eq 4. Therefore, this equation was used to fit other equilibrium quantities such as the compositions, x and y, and the temperatures, T, setting $Q_1 = y_1 - x_1$, $Q_2 = T - \sum x_i T_{b,i}$, and $Q_3 = T - \sum y_i T_{b,i}$. Table 7 presents the values for the parameters of eq 4 and s(Q) obtained by correlating the function $y_1 - x_1$ or T vs vapor or liquid phase composition. Figure 1 compares the compositions for the three mixtures

Table 6. Correlation Parameters for Different Equations and Standard Deviations, $s(g^{E}/RT)$

-								
Propyl	Propyl Propanoate $(1) + Ethanol(2)$							
Margules	$A_{12} = 0.998$	$A_{21} = 0.563$	0.008					
Van Laar	$A_{12} = 1.343$	$A_{21} = 1.311$	0.015					
Wilson	$A_{12} = 0.347$	$A_{21} = 1.015$	0.009					
NRTL ($\alpha = 0.47$)	$\tau_{12} = -0.017$	$\tau_{21} = 1.043$	0.009					
UNIQUAC	$\tau_{12} = 0.617$	$\tau_{21} = 1.043$	0.009					
eq 4 ($k = 9.39$)	$A_0 = 0.903$	$A_1 = -1.017$	0.003					
Propyl P	ropanoate $(1) + 1$ -	Propanol (2)						
Margules	$A_{12} = 0.758$	$A_{21} = 0.217$	0.006					
Van Laar	$A_{12} = 2.642$	$A_{21} = 2.375$	0.016					
Wilson	$A_{12} = 0.232$	$A_{21} = 1.564$	0.009					
NRTL ($\alpha = 0.47$)	$\tau_{12} = -0.350$	$\tau_{21} = 1.192$	0.009					
UNIQUAC	$\tau_{12} = 1.231$	$\tau_{21} = 0.619$	0.009					
eq 4 ($k = 3.54$)	$A_0 = 0.657$	$A_1 = -0.686$	0.002					
Propyl H	Propanoate (1) + 1-	Butanol (2)						
Margules	$A_{12} = 0.349$	$A_{21} = 0.268$	0.010					
Van Laar	$A_{12} = 2.987$	$A_{21} = 3.089$	0.009					
Wilson	$A_{12} = 0.692$	$A_{21} = 1.027$	0.010					
NRTL ($\alpha = 0.47$)	$\tau_{12} = -0.049$	$\tau_{21} = 0.394$	0.010					
UNIQUAC	$\tau_{12} = 0.838$	$\tau_{21} = 1.069$	0.010					

eq 4 (k = 0.36) $A_0 = -0.178$ $A_1 = 1.687$ $A_2 = -1.342$ 0.004

considered herein along with the values found in the literature (Mozzhukhin, A. S.; Mitropolskaya, V. A.; Se-

Table 7. Coefficients of Eq 4 and Standard Deviation, s(Q), for $Q_1 = y_1 - x_1$ and $z = x_1$, $Q_2 = T - \sum x_i T_{b,i}$ and $z = x_1$, and $Q_3 = T - \sum y_i T_{b,i}$ and $z = y_1$

mixture	function	k	A_0	A_1	A_2	s(Q)
propyl propanoate (1) +						
ethanol (2)	Q_1	9.394	0.9030	-1.0166		0.0031
	\dot{Q}_2	1.46	-36.43	-12.94	-109.60	0.21
	$\dot{Q_3}$	0.147	-48.22	68.36		0.33
1-propanol (2)	\dot{Q}_1	3.542	0.6573	-0.6864		0.0021
	\tilde{Q}_2	3.20	-21.60	-39.63		0.17
	$\tilde{Q_3}$	0.351	-31.32	35.09		0.22
1-butanol (2)	\check{Q}_1	0.359	-0.1781	1.6874	-1.3418	0.0040
	$\tilde{Q_2}$	0.19	-13.81			0.12
	$\check{Q_3}$	3.98	-14.24	8.72		0.14

rafimov, L. A. Zh. Fiz. Khim. **1967**, 41, 227; see Gmehling et al., 1982) for propyl propanoate + 1-propanol, the corresponding y_1 values show a difference close to 21% which cannot be explained. Figure 2 shows the plots of temperature against composition for the same binary systems; in this case, at the same liquid phase mole fraction, the mean deviation in the temperature was close to 2 K with respect to the above literature values. The azeotrope observed in the mixture propyl propanoate (1) + 1-butanol (2) was determined with the above correlation and setting $y_1 - x_1 = 0$ and $\partial T/\partial x_1 = \partial T/\partial y_1 = 0$ to give an azeotrope at T = 389.26 K and $x_1 = y_1 = 0.328$.

The results were also compared with predictions from several group-contribution models. The better estimation of the activity coefficients and of the vapor phase mole fraction was obtained using the ASOG model with an overall mean difference, for the three mixtures, of less than 5%. The predictions with the version of UNIFAC proposed by Larsen et al. (1986) gave an average difference close to 7%, and depending on the interaction pair considered, the version of Fredenslund et al. (1975) with the temperatureindependent parameters gave estimations between 11% (CCOH/COOC) and 16% (OH/COOC) in the γ_i values.

Literature Cited

Fárková, J.; Wichterle, I. Vapor Pressures of some Ethyl and Propyl Esters of Fatty Acids. Fluid Phase Equilib. 1993, 90, 143-148.

- Fredenslund, Aa.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC. A Group-Contribution Method; Elsevier: Amsterdam, 1977.
- Fredenslund, Aa.; Jones, R. L.; Prausnitz, J. M. Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE J. 1975, 21, 1086-1099.
- AIChE J. 1975, 21, 1086–1099. Galvan, S.; Ortega, J.; Susial, P.; Peña, J. A. Isobaric VLE for Propyl Methanoate+n-Alkanes (C₇,C₈,C₉) or n-Alkanols (C₂,C₃,C₄). J.

Chem. Eng. Jpn. 1994, 27, 529-534.

- Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection; Dechema: Frankfurt, 1982; Vol. I, Part 2c, p 545.
- Hansen, H. K.; Rasmussen, Aa.; Schiller, M.; Gmehling, J. Vapor-liquid Equilibria by UNIFAC Group-Contribution. 5. Revision and Extension. Ind. Eng. Chem. Res. 1991, 30, 2352-2355.
- Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 1975, 14 (3), 209-216.
- Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by ASOG Method; Kodansha Ltd.: Tokyo, 1979.
- Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. Phase Equilibria and Separation Process. A Modified UNIFAC Group Contribution Model for Prediction of Phase Equilibria and Heat of Mixing; Inst. Kem. Lyngby, 1986.
- Ortega, J.; Peña, J. A.; de Alfonso, C. Isobaric Vapor-Liquid Equilibria of Ethyl Acetate + Ethanol Mixtures at 760 ± 0.5 mm. J. Chem. Eng. Data **1986**, 31, 339-342.
- Ortega, J.; Susial, P.; de Alfonso, C. Isobaric Vapor-Liquid Equilibrium of Methyl Butanoate with Ethanol and 1-Propanol Binary Systems. J. Chem. Eng. Data **1990**, 35, 216-219.
- Spencer, C. F.; Danner, R. P. J. Improved Equation for Predicting of Saturated Liquid Density. J. Chem. Eng. Data 1972, 17, 236-241.
- Susial, P.; Ortega, J. Isobaric Vapor-Liquid Equilibria in the System Methyl Propanoate + n-Butyl Alcohol. J. Chem. Eng. Data 1993, 38, 647-649.
- Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. Determination of new ASOG parameters. J. Chem. Eng. Jpn. **1990**, 23, 453-463.
- TRC-Thermodynamic Tables-NonHydrocarbons. Thermodynamic Research Center, The Texas A&M University System: College Station, TX, 1969.
- Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients. AIChE J. 1974, 20, 263–272.

Received for review April 29, 1994. Accepted August 3, $1994.^{\circ}$ This work was financed by the Spanish DGICYT (Project No. PB92-0559).

* Abstract published in Advance ACS Abstracts, September 1, 1994.